Chứng minh và tìm giá trị của biểu thức P với x trong đề bài

4
(339 votes)

Trong bài viết này, chúng ta sẽ tìm hiểu về biểu thức P và giải quyết hai câu hỏi liên quan đến nó. Đầu tiên, chúng ta sẽ chứng minh rằng \(P=\frac{5}{\sqrt{x}-1}\) với \(x \geq 0\) và \(x <br/ >eq 1\). Sau đó, chúng ta sẽ tìm giá trị của x khi P=5. a) Chứng minh \(P=\frac{5}{\sqrt{x}-1}\) Để chứng minh điều này, chúng ta sẽ bắt đầu bằng cách thay thế biểu thức P bằng giá trị ban đầu và thực hiện các phép tính. \(P=\frac{\sqrt{x}}{x-\sqrt{x}}+\frac{3}{\sqrt{x}+1}+\frac{\sqrt{x}+7}{x-1}\) Tiếp theo, chúng ta sẽ tìm cách chung tử số và mẫu số của các phân số để thu được một biểu thức đơn giản hơn. \(P=\frac{\sqrt{x}(\sqrt{x}+1)+3(x-1)+(\sqrt{x}+7)(x-\sqrt{x})}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) Tiếp theo, chúng ta sẽ tiếp tục rút gọn biểu thức trên để thu được kết quả cuối cùng. \(P=\frac{\sqrt{x}(\sqrt{x}+1)+3(x-1)+(\sqrt{x}+7)(x-\sqrt{x})}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{\sqrt{x^2}+\sqrt{x}+3x-3+\sqrt{x^2}+7x-7-\sqrt{x^3}-\sqrt{x^2}}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2\sqrt{x^2}+10x-10-\sqrt{x^3}-\sqrt{x^2}}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2x+10x-10-\sqrt{x^3}-\sqrt{x^2}}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{12x-10-\sqrt{x^3}-\sqrt{x^2}}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) Tiếp theo, chúng ta sẽ tiếp tục rút gọn biểu thức trên để thu được kết quả cuối cùng. \(P=\frac{12x-10-\sqrt{x^3}-\sqrt{x^2}}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^3}-\sqrt{x^2}}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}+1)(x-1)}\) \(P=\frac{2(6x-5)-\sqrt{x^2}(\sqrt{x}+1)}{(x-\sqrt{x})(\sqrt{x}