Mối quan hệ giữa khối lượng và động năng trong hệ qui chiếu

4
(258 votes)

Trong bài viết này, chúng ta sẽ tìm hiểu về mối quan hệ giữa khối lượng và động năng trong cùng một hệ qui chiếu. Yêu cầu của bài viết là xác định hệ thức liên hệ giữa khối lượng của hai vật và động năng của chúng. Theo yêu cầu, chúng ta có hai vật có khối lượng \( m_{1} \) và \( m_{2} \) chuyển động trong cùng một hệ qui chiếu. Tốc độ của vật \( m_{1} \) gấp 2 lần tốc độ của vật \( m_{2} \), nhưng động năng của vật \( m_{2} \) lại gấp 3 lần động năng của vật \( m_{1} \). Để tìm hệ thức liên hệ giữa khối lượng của hai vật và động năng của chúng, chúng ta có thể sử dụng công thức động năng \( K = \frac{1}{2}mv^2 \), trong đó \( K \) là động năng, \( m \) là khối lượng và \( v \) là tốc độ. Áp dụng công thức động năng cho vật \( m_{1} \), ta có \( K_{1} = \frac{1}{2}m_{1}v_{1}^2 \), và áp dụng công thức động năng cho vật \( m_{2} \), ta có \( K_{2} = \frac{1}{2}m_{2}v_{2}^2 \). Theo yêu cầu, tốc độ của vật \( m_{1} \) gấp 2 lần tốc độ của vật \( m_{2} \), nghĩa là \( v_{1} = 2v_{2} \). Đồng thời, động năng của vật \( m_{2} \) gấp 3 lần động năng của vật \( m_{1} \), nghĩa là \( K_{2} = 3K_{1} \). Thay các giá trị vào công thức động năng, ta có \( \frac{1}{2}m_{1}(2v_{2})^2 = 3(\frac{1}{2}m_{2}v_{2}^2) \). Tiếp theo, ta có thể rút gọn phương trình trên để tìm hệ thức liên hệ giữa khối lượng của hai vật.