Tính toán góc B và độ dài cạnh của tam giác vuông ABC
Trong bài toán này, chúng ta có một tam giác vuông ABC với góc B và độ dài cạnh AB và AH đã được cho. Để tìm ra giá trị của góc B và độ dài cạnh HB, HC và AC, chúng ta sẽ sử dụng các công thức và tính chất của tam giác vuông. Đầu tiên, chúng ta cần tìm giá trị của góc B. Để làm điều này, chúng ta sẽ sử dụng công thức sau: $sinB = \frac{opposite}{hypotenuse}$ Trong trường hợp này, cạnh đối diện của góc B là AH và cạnh huyền là AB. Thay các giá trị đã cho vào công thức, chúng ta có: $sinB = \frac{AH}{AB} = \frac{4}{8} = \frac{1}{2}$ Vì vậy, giá trị của góc B là 30 độ. Tiếp theo, chúng ta sẽ tìm độ dài của các cạnh HB, HC và AC. Để làm điều này, chúng ta sẽ sử dụng các công thức sau: $HB = AB \times sinB = 8 \times \frac{1}{2} = 4cm$ $HC = AB \times cosB = 8 \times \sqrt{1 - (\frac{1}{2})^2} = 6.4cm$ $AC = AB - AH = 8 - 4 = 4cm$ Vì vậy, độ dài của các cạnh HB, HC và AC lần lượt là 4cm, 6.4cm và 4cm. Hy vọng rằng bài viết này đã giúp bạn hiểu rõ hơn về cách tính toán góc B và độ dài cạnh của tam giác vuông ABC. Nếu bạn có bất kỳ câu hỏi nào khác, hãy cho tôi biết để tôi có thể giúp bạn.