Tính toán tích phân và giải quyết bài toán liên quan đến giá trị của B dựa trên giá trị của A ##
Để giải quyết bài toán này, chúng ta cần tính toán tích phân cho cả A và B. Đầu tiên, chúng ta sẽ tính toán tích phân cho A và sau đó sử dụng kết quả đó để tính toán tích phân cho B. ### Tính toán tích phân cho A: Chúng ta có: \[ A = \int_{0}^{1} (x^2 - x + 2024m) dx = 5 \] Để tính toán tích phân này, chúng ta cần tích phân từng hạng mục riêng lẻ: \[ \int_{0}^{1} x^2 dx - \int_{0}^{1} x dx + \int_{0}^{1} 2024m dx \] Tích phân từng hạng mục: \[ \int_{0}^{1} x^2 dx = \frac{1}{3} \] \[ \int_{0}^{1} x dx = \frac{1}{2} \] \[ \int_{0}^{1} 2024m dx = 2024m \] Thay các giá trị tích phân vào biểu thức cho A: \[ A = \frac{1}{3} - \frac{1}{2} + 2024m = 5 \] Giải phương trình để tìm giá trị của m: \[ \frac{1}{3} - \frac{1}{2} + 2024m = 5 \] \[ -\frac{1}{6} + 2024m = 5 \] \[ 2024m = 5 + \frac{1}{6} \] \[ 2024m = \frac{30}{6} + \frac{1}{6} \] \[ 2024m = \frac{31}{6} \] \[ m = \frac{31}{6 \times 2024} \] \[ m = \frac{31}{12144} \] ### Tính toán tích phân cho B: Chúng ta cần tính toán tích phân cho B dựa trên giá trị của A và m đã tìm được: \[ B = \int_{1}^{2} (x^2 - 3x + 2 + 2024m) dx \] Tích phân từng hạng mục: \[ \int_{1}^{2} x^2 dx - 3 \int_{1}^{2} x dx + \int_{1}^{2} 2 dx + 2024m \int_{1}^{2} dx \] Tính toán từng tích phân: \[ \int_{1}^{2} x^2 dx = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} \] \[ 3 \int_{1}^{2} x dx = 3 \left( \frac{2}{1} - \frac{1}{1} \right) = 3 \times 1 = 3 \] \[ \int_{1}^{2} 2 dx = 2 \times (2 - 1) = 2 \] \[ 2024m \int_{1}^{2} dx = 2024m \times (2 - 1) = 2024m \] Thay các giá trị tích phân vào biểu thức cho B: \[ B = \frac{7}{3} - 3 + 2 + 2024m \] \[ B = \frac{7}{3} - 1 + 2024m \] Thay giá trị của m vào biểu thức cho B: \[ B = \frac{7}{3} - 1 + 2024 \times \frac{31}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{2024 \times 31}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{63124}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{63124}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{63124}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{63124}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{63124}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{63124}{12144} \] \[ B = \frac{7}{3} - 1 + \frac{63124}{12144} \] \[ B = \frac