Trang chủ
/
Toán
/
2) (2)/(2-b)+(2b+2)/(3b-6) 4) (5b+1)/(2b-6)+(8)/(3-b) 6 (5b-5a+24)/(3b-3a)+(8)/(a-b) 8) (bx-x+a)/(ba-a)+(1)/(1-b) (x)/(2y^2)-xy+(4y)/(x^2)-2xy (a^2+2a)/(a^3)-1-(1)/(a^2)+a+1 (ax+2x-1)/(ax-a+x-1)+(x)/(1-x) 16Y (a^2-b^2-2a+b)/(a-2+2b-ab)+(a)/(b-1) is (1)/(x-2a)+(8a^2)/(4a^2)x-x^(3)+(1)/(x+2a) 20) (x)/(a+b)+(1)/(b-a)+(ax-bx+a+b)/(a^2)-b^(2)

Câu hỏi

2) (2)/(2-b)+(2b+2)/(3b-6)
4) (5b+1)/(2b-6)+(8)/(3-b)
6 (5b-5a+24)/(3b-3a)+(8)/(a-b)
8) (bx-x+a)/(ba-a)+(1)/(1-b)
(x)/(2y^2)-xy+(4y)/(x^2)-2xy
(a^2+2a)/(a^3)-1-(1)/(a^2)+a+1
(ax+2x-1)/(ax-a+x-1)+(x)/(1-x)
16Y (a^2-b^2-2a+b)/(a-2+2b-ab)+(a)/(b-1)
is (1)/(x-2a)+(8a^2)/(4a^2)x-x^(3)+(1)/(x+2a)
20) (x)/(a+b)+(1)/(b-a)+(ax-bx+a+b)/(a^2)-b^(2)
zoom-out-in

2) (2)/(2-b)+(2b+2)/(3b-6) 4) (5b+1)/(2b-6)+(8)/(3-b) 6 (5b-5a+24)/(3b-3a)+(8)/(a-b) 8) (bx-x+a)/(ba-a)+(1)/(1-b) (x)/(2y^2)-xy+(4y)/(x^2)-2xy (a^2+2a)/(a^3)-1-(1)/(a^2)+a+1 (ax+2x-1)/(ax-a+x-1)+(x)/(1-x) 16Y (a^2-b^2-2a+b)/(a-2+2b-ab)+(a)/(b-1) is (1)/(x-2a)+(8a^2)/(4a^2)x-x^(3)+(1)/(x+2a) 20) (x)/(a+b)+(1)/(b-a)+(ax-bx+a+b)/(a^2)-b^(2)

expert verifiedXác minh chuyên gia

Giải pháp

4.3(264 phiếu bầu)
avatar
Oanh Trangthầy · Hướng dẫn 5 năm

Trả lời

2) \(\frac{2}{2-b} + \frac{2b+2}{3b-6}\)<br />4) \(\frac{5b+1}{2b-6} + \frac{8}{3-b}\)<br />6) \(\frac{5b-5a+24}{3b-3a} + \frac{8}{a-b}\)<br />8) \(\frac{bx-x+a}{ba-a} + \frac{1}{1-b}\)<br />\(\frac{x}{2y^2-xy} + \frac{4y}{x^2-2xy}\)<br />12) \(\frac{a^2+2a}{a^3-1} - \frac{1}{a^2+a+1}\)<br />I) \(\frac{ax+2x-1}{ax-a+x-1} + \frac{x}{1-x}\)<br />\(\frac{a^2-b^2-2a+b}{a-2+2b-ab} + \frac{a}{b-1}\)<br />is) \(\frac{1}{x-2a} + \frac{8a^2}{4a^2x-x^3} + \frac{1}{x+2a}\)<br />\(\frac{x}{a+b} + \frac{1}{b-a} + \frac{ax-bx+a+b}{a^2-b^2}\)

Giải thích

These are algebraic simplification problems. The main goal is to simplify each expression to its simplest form. This involves factoring, canceling out common factors, and applying the properties of fractions. <br />2) The denominators can be factored as \(2-b\) and \(3(b-2)\). The second fraction can be simplified by factoring out the common factor of 2 from the numerator.<br />4) The denominators can be factored as \(2(b-3)\) and \(3-b\). The second fraction can be simplified by factoring out the common factor of 2 from the numerator.<br />6) The denominators can be factored as \(3(b-a)\) and \(a-b\). The second fraction can be simplified by factoring out the common factor of a from the numerator.<br />8) The denominator of the first fraction can be factored as \(a(b-1)\). The second fraction can be simplified by factoring out the common factor of -1 from the denominator.<br />The fraction can be simplified by factoring the denominator as \(xy(2-y)\) and \(x^2(1-2y)\).<br />12) The denominator of the first fraction can be factored as \(a(a^2-1)\) and the second fraction's denominator can be factored as \(a^2(a+1)\).<br />I) The denominator of the first fraction can be factored as \(a(x-1)\) and the second fraction's denominator can be factored as \(1-x\).<br />The denominator of the first fraction can be factored as \(a(1-b)\) and the second fraction's denominator can be factored as \(b-1\).<br />is) The denominator of the first fraction can be factored as \(x-2a\) and the second fraction's denominator can be factored as \(4a^2(x-a)\) and \(x+2a\).<br />The denominator of the first fraction can be factored as \(a+b\) and the second fraction's denominator can be factored as \(b-a\), and the numerator can be factored as \(a(1-x)+b\).