Trang chủ
/
Toán
/
(d) f(x,y,z)=xye^z+yze^x,P=(1,0,0) , véc tơ từ P đến (2,2,1)

Câu hỏi

(d) f(x,y,z)=xye^z+yze^x,P=(1,0,0) , véc tơ từ P đến (2,2,1)
zoom-out-in

(d) f(x,y,z)=xye^z+yze^x,P=(1,0,0) , véc tơ từ P đến (2,2,1)

expert verifiedXác minh chuyên gia

Giải pháp

4.5(173 phiếu bầu)
avatar
Tuấn Kiệtthầy · Hướng dẫn 5 năm

Trả lời

The gradient of $f$ at $P$ is $\nabla f(P) = (0, 0, 1)$. The vector from $P$ to $(2,2,1)$ is $(1, 2, 1)$.

Giải thích

The question is asking for the gradient of the function $f(x,y,z)=xye^{z}+yze^{x}$ at the point $P=(1,0,0)$, and then to find the vector from $P$ to $(2,2,1)$. The gradient of a function gives us a vector that points in the direction of the steepest ascent of the function. It is found by taking the partial derivative of the function with respect to each variable. The vector from $P$ to $(2,2,1)$ is simply the difference between the coordinates of $(2,2,1)$ and $P$.