Trang chủ
/
Toán
/
bài i (2,0 điêm). cho hai biểu thức a=(sqrt (x)+2)/(sqrt (x)-5) và b=(3)/(sqrt (x)+5)+(20-2sqrt (x))/(x-25) với xgeqslant

Câu hỏi

Bài I (2,0 điêm). Cho hai biểu thức A=(sqrt (x)+2)/(sqrt (x)-5) và B=(3)/(sqrt (x)+5)+(20-2sqrt (x))/(x-25) với xgeqslant 0,xneq 25 1) Tính giá trị của biêu thức A khi x=9 2) Chứng minh B=(1)/(sqrt (x)-5) 3) Tìm tất cả giá trị của x để A=Bcdot vert x-4vert

Xác minh chuyên gia

Giải pháp

4.4 (181 Phiếu)
Thùy Linh người xuất sắc · Hướng dẫn 8 năm

Trả lời

【Trả lời】: 1. Khi , ta có . 2. Để chứng minh , ta biến đổi . Đầu tiên, biến đổi mẫu số . Khi đó, . 3. Đặt , ta có . Điều này dẫn đến . - Với , ta có . Bình phương hai vế, ta được . Giải phương trình bậc hai này, ta nhận được hoặc , nhưng không thỏa mãn phương trình ban đầu. - Với A x=9 x=9 B=\frac{1}{\sqrt{x}-5} B x A=B\cdot|x-4|$, ta cần đặt hai biểu thức bằng nhau và giải phương trình tương ứng. Phương trình này có hai trường hợp phụ thuộc vào giá trị tuyệt đối, yêu cầu giải cả hai trường hợp và kiểm tra điều kiện cho từng nghiệm.