Câu hỏi
Câu 16: Tìm họ nguyên hàm của hàm số f(x)=x^2024 int f(x)dx=(1)/(2025)cdot x^2025+C int f(x)dx=2024cdot x^2023+C int f(x)dx=x^2025+C int f(x)dx=(1)/(2023)cdot x^2023+C
Giải pháp
4.1
(374 Phiếu)
Lê Quốc Bảo
thầy · Hướng dẫn 5 năm
Trả lời
\(\int f(x)dx = \frac{1}{2025} \cdot x^{2025} + C\)
Giải thích
Để tìm nguyên hàm của hàm số \(f(x) = x^{2024}\), ta cần tìm một hàm số \(F(x)\) sao cho đạo hàm của \(F(x)\) bằng \(f(x)\). Theo quy tắc tích phân, nguyên hàm của
(với
) là
, trong đó
là hằng số tích phân. Áp dụng quy tắc này cho \(f(x) = x^{2024}\), ta có \(\int f(x)dx = \frac{1}{2025} \cdot x^{2025} + C\). Các lựa chọn khác không đúng vì không tuân theo quy tắc tích phân đã nêu.