Trang chủ
/
Toán
/
Prob 12. Suppose F(x) Is Differentiable, F(1)=3,f(3)=1 and Int _(1)^3xf'(x)dx=13 What Is the Average Value of F on the Interval [1,3]

Câu hỏi

Prob 12. Suppose f(x) is differentiable, f(1)=3,f(3)=1 and int _(1)^3xf'(x)dx=13 What is the average value of f on the interval [1,3]

Xác minh chuyên gia

Giải pháp

4.5 (267 Phiếu)
Đức An chuyên gia · Hướng dẫn 6 năm

Trả lời

Let the average value of on the interval be denoted by . Then A = \frac{1}{3-1} \int_1^3 f(x) dx = \frac{1}{2} \int_1^3 f(x) dx We use integration by parts to evaluate . Let and . Then and .Using integration by parts, we have: \int_1^3 xf'(x) dx = xf(x) \Big|_1^3 - \int_1^3 f(x) dx = 3f(3) - 1f(1) - \int_1^3 f(x) dx We are given that , , and . Substituting these values, we get: 13 = 3(1) - 1(3) - \int_1^3 f(x) dx 13 = 0 - \int_1^3 f(x) dx \int_1^3 f(x) dx = -13 Therefore, the average value of on is: A = \frac{1}{2} \int_1^3 f(x) dx = \frac{1}{2}(-13) = -\frac{13}{2} Thus, the average value of on the interval is .

Similar Questions