Trang chủ
/
Toán
/

Câu hỏi

(2024+2025)/(2025+2026)+(2024)/(2025)+(2025)/(2026)

Xác minh chuyên gia

Giải pháp

4.4 (284 Phiếu)
Hồng Thủy người xuất sắc · Hướng dẫn 8 năm

Trả lời

Let the given expression be denoted by E. Then E = \frac{2024+2025}{2024+2025} + \frac{2024}{2025} + \frac{2025}{2026} The first term simplifies to 1: \frac{2024+2025}{2024+2025} = 1 The second and third terms are fractions close to 1. Let's approximate them: \frac{2024}{2025} \approx 1 - \frac{1}{2025} \frac{2025}{2026} \approx 1 - \frac{1}{2026} Therefore, E \approx 1 + (1 - \frac{1}{2025}) + (1 - \frac{1}{2026}) = 3 - \frac{1}{2025} - \frac{1}{2026} Since and are small positive numbers, is slightly less than 3.Let's calculate the second and third terms more precisely: \frac{2024}{2025} \approx 0.9995037 \frac{2025}{2026} \approx 0.99950468 Adding these two terms: 0.9995037 + 0.99950468 \approx 1.99900838 Therefore, E \approx 1 + 1.99900838 = 2.99900838 This confirms that E is slightly less than 3.To be more precise, we can calculate the exact value: E = 1 + \frac{2024}{2025} + \frac{2025}{2026} \approx 1 + 0.9995037 + 0.99950468 \approx 2.99900838 Final Answer: The final answer is